Python 5种不为人知的高级特征

枫铃3年前 (2021-10-03)Python274

任何编程语言的高级特征通常都是通过大量的使用经验才发现的。比如你在编写一个复杂的项目,并在 stackoverflow 上寻找某个问题的答案。然后你突然发现了一个非常优雅的解决方案,它使用了你从不知道的 Python 功能!

这种学习方式太有趣了:通过探索,偶然发现什么。

下面是 Python 的 5 种高级特征,以及它们的用法。

Lambda 函数

Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。

Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。

lambda 函数可以使用任意数量的参数,但表达式只能有一个。

x = lambda a, b : a * b  
print(x(5, 6)) # prints  30  
x = lambda a : a*3 + 3  
print(x(3)) # prints  12 

看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。

Map 函数

Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。

'''
学习中遇到问题没人解答?小编创建了一个Python学习交流QQ群:531509025
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
def square_it_func(a):  
    return a * a  
x = map(square_it_func, [1, 4, 7])  
print(x) # prints  [1, 16, 47]  
def multiplier_func(a, b):  
    return a * b  
x = map(multiplier_func, [1, 4, 7], [2, 5, 8]) 
print(x) # prints  [2, 20, 56] 

看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。

Filter 函数

filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。

详情请看如下示例:

# Our numbers  
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]  
# Function that filters out all numbers which are odd  
def filter_odd_numbers(num):  
    if num % 2 == 0:  
        return True  
    else:  
        return False  
filterfiltered_numbers = filter(filter_odd_numbers, numbers)  
print(filtered_numbers)  
# filtered_numbers = [2, 4, 6, 8, 10, 12, 14] 

我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。

Itertools 模块

Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。

使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:

from itertools import *  
# Easy joining of two lists into a list of tuples  
for i in izip([1, 2, 3], [ a ,  b ,  c ]):  
    print i  
# ( a , 1)  
# ( b , 2)  
# ( c , 3)  
# The count() function returns an interator that   
# produces consecutive integers, forever. This  
#># elements for readability and convenience 
for i in izip(count(1), [ Bob ,  Emily ,  Joe ]):  
    print i  
# (1,  Bob )  
# (2,  Emily )  
# (3,  Joe )      
# The dropwhile() function returns an iterator that returns   
# all the elements of the input which come after a certain   
# condition becomes false for the first time.   
def check_for_drop(x):  
    print  Checking:  , x  
    return (x > 5)  
for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):  
    print  Result:  , i  
# Checking: 2  
# Checking: 4  
# Result: 6  
# Result: 8  
# Result: 10  
# Result: 12  
# The groupby() function is great for retrieving bunches  
# of iterator elements which are the same or have similar   
# properties  
a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])  
for key, value in groupby(a):  
    print(key, value), end=   )  
# (1, [1, 1, 1])  
# (2, [2, 2, 2])   
# (3, [3, 3])   
# (4, [4])   
# (5, [5])  

Generator 函数

Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。

比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。

如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。

代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。

上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。

也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。

'''
学习中遇到问题没人解答?小编创建了一个Python学习交流QQ群:531509025
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
# (1) Using a for loopv  
numbers = list()  
for i in range(1000):  
    numbers.append(i+1)  
total = sum(numbers)  
# (2) Using a generator  
 def generate_numbers(n):  
     num, numbers = 1, []  
     while num < n:  
           numbers.append(num)  
     num += 1  
     return numbers  
 total = sum(generate_numbers(1000))  
 # (3) range() vs xrange()  
 total = sum(range(1000 + 1))  
 total = sum(xrange(1000 + 1))  

相关文章

利用python同步windows和linux文件

写python脚本的初衷,每次在windows编辑完文件后,想同步到linux上去,只能够登录服务器,...

爬虫基本原理

爬虫基本原理 一、爬虫是什么? 百度百科和维基百科对网络爬虫的定义:简单来说爬虫就是抓取目标网站内容的工具,一般是根据定义的行...

Django 函数和方法的区别

函数和方法的区别 1、函数要手动传self,方法不用传 2、如果是一个函数,用类名去调用,如果是一个方法...

Django 知识补漏单例模式

单例模式:(说白了就是)创建一个类的实例。在 Python 中,我们可以用多种方法来实现单例模式&#x...

Django基础知识MTV

Django简介 Django是使用Python编写的一个开源Web框架。可以用它来快速搭建一个高性能的网站。 Django也是一个MVC框架。但是在Dj...

Python mysql 索引原理与慢查询优化

一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。